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Abstract. Ratios of multiplicity moments, Hq (cumulant over factorial moments Kq/Fq), have been ob-
served to show an oscillatory behavior with respect to order, q. Recent studies of e+e− annihilations at
LEP have shown, moreover, that the amplitude and oscillation length vary strongly with the jet resolution
parameter ycut. We study the predictions of the perturbative QCD parton cascade assuming low non-
perturbative cut-off (Q0 ∼ ΛQCD ∼ few 100MeV) and derive the expectations as a function of the CMS
energy and jet resolution from threshold to very high energies. We consider numerical solutions of the evo-
lution equations of gluodynamics in double logarithmic and modified leading logarithmic approximations
(DLA, MLLA), as well as results from a parton MC with readjusted parameters. The main characteristics
are obtained in MLLA, while a more numerically accurate description is obtained by the MC model. A
unified description of correlations between hadrons and correlations between jets emerges, in particular
for the transition region of small ycut.

1 Introduction

The multiplicity of hadrons is the simplest global charac-
teristic of the final state in particle collisions. It was an
early conjecture that the main trends of the mean mul-
tiplicity and higher multiplicity moments could be repro-
duced by the corresponding perturbative QCD calcula-
tions for the quark–gluon cascade. First results have been
derived for the asymptotic high energy limit in applica-
tion of the double logarithmic approximation (DLA) [1–
3]. Taking into account the leading contributions from the
collinear and soft radiation singularities and angular or-
dering [4,5] one arrives at a probabilistic description of the
parton cascade which evolves from the high energy scale
Q down to the hadronization scale Q0. The perturbative
expansion in the coupling αs can be resummed and the
exponent can be expanded into a power series of

√
αs. In

this way results on meanmultiplicity [5,3,6] and higher mo-
ments [2,3,7] have been obtained, subsequently the next-
to-leading log corrections in MLLA [8–11] and yet higher
order terms [12–14] have been derived. All these results
can be obtained as different approximations to the MLLA
evolution equations for the generating function of quark
and gluon jets [15]. A full solution of these equations can
be obtained by numerical methods [16,17].

One motivation of such studies was – and still is – to
find out how far one can extend perturbative calculations
into the regime of real strong interactions which determine
multiparticle production. In this way, we hope to learn
more about the color confinement mechanism. The MLLA
results on mean multiplicities and single particle spectra
give a surprisingly good description of the data which led
to the notion of “local parton hadron duality” (LPHD [9]).

The results here depend on only two parameters, the QCD
scale Λ and a single non-perturbative parameter, the trans-
verse momentum cut-off Q0 with Q0 � Λ; an overall nor-
malization factor K is also allowed for. Such parton level
calculations have been applied to a large variety of inclu-
sive observables, in particular to multiparticle correlations
(“generalized LPHD” [18]); even quasi-exclusive processes
are within reach [19]. In general, one observes that with
increasing accuracy, the perturbatively calculated observ-
ables are in better agreement with the data. This simple
model does not contain any hadronic resonances, so it is
clear that it can only describe sufficiently inclusive ob-
servables and should not be considered for too restricted
regions of phase space (for pertinent reviews, see [20–23]).

Whereas there is no problem with inclusive single parti-
cle results, the status of higher multiplicity moments (fac-
torial moments Fq and cumulant moments Kq, see below),
which are integrals over the respective q particle correla-
tion functions, is more controversial. The data on quark
and gluon jets for q ≤ 5 [24] deviate with increasing order
q from the higher order logarithmic approximations [25];
they correspond to an expansion in q

√
αs rather than√

αs [20,22] and the known terms fit the mean multiplicity
(moment q = 1) but the moments of higher order become
much larger than the data. On the other hand, numerical
solutions of the MLLA evolution equation yield very good
agreement with these data [16,17]; remarkably, a common
fit of hadron and jet multiplicities is possible and results
in

Ktot ≈ 1 (1)

for a small cut-off Q0 � Λ where Ktot is the ratio of the
total hadron to parton multiplicities. This ratio Ktot ≈ 1



58 M.A. Buican et al.: QCD explanation of oscillating hadron and jet multiplicity moments

was also found to be consistent with the quark and gluon
multiplicities in high pT jets observed at the TEVATRON
[26] where the higher order MLLA corrections are taken
into account as well.

An interesting prediction [13] from the asymptotic
√
αs

expansion concerns the ratio of moments

Hq = Kq/Fq. (2)

These moments show an oscillatory behavior with the first
minimum at

qmin ≈ 1
h1γ0

+
1
2
+O(γ0), h1 =

11
24

, γ20 =
2NCαs

π
, (3)

where NC = 3 and γ0 denotes the leading order multiplic-
ity anomalous dimension at the considered energy scale,
numerically qmin ≈ 5(±1) at LEP energies. Such oscilla-
tions have indeed been observed in e+e− annihilations at
SLC [27] and recently at LEP [28,29] with the first mini-
mum at qmin ≈ 5 as expected.

Since the absolute size of the moments are not in quan-
titative agreement with these high energy predictions the
physical origin of these oscillations remains controversial.
It has been noted that the truncation of the multiplic-
ity distribution at large multiplicity, n, also gives rise to
oscillations [30]. Furthermore, a superposition of two com-
ponents (like 2 and 3 jet events), each one modeled without
oscillations, can lead to oscillations in the full sample [31].

A new element has been brought into the discussion re-
cently through analyses of the L3 measurements [28,29] of
multiplicity moments for hadrons and narrow jets at high
resolution (small ycut parameter). The measurements fea-
ture a rapid variation of both the oscillation amplitude
and oscillation length in q as function of ycut. This be-
havior does not appear in the asymptotic solutions of the
evolution equation [13].

In this paper we aim at an understanding, within per-
turbative QCD, of the Hq oscillation phenomena in both
hadron and jet final states. We study first the solutions
of the evolution equations (both DLA and MLLA) with
jet hardness from threshold up to the asymptotic regime;
furthermore, we investigate the variations of the jet multi-
plicity moments with resolution, from low resolution (fat
jets) up to high resolution (narrow jets) – ultimately up
to the scale for the parton–hadron transition. These cal-
culations depend only on the QCD scale, Λ, and on one
parameter, Qc, which refers to the transverse momentum
cut-off. This transverse momentum cut-off is given by ei-
ther the scale of the arbitrarily chosen jet resolution or the
characteristic hadronic scale Qc = Q0. The full results in-
cluding the dependence on Qc, are obtained by numerical
methods. The need for an overall normalization factor K
is considered for the mean multiplicity.

A similar theoretical scheme is realized in a parton
level MC (ARIADNE [32]) which is based on sequential
parton radiation from color dipoles [33,34] with a kT cut-
off. We have readjusted the parameters Λ and Q0 in this
MC to describe hadronic final states without an additional
hadronization phase, assuming again a duality between
hadron and parton final states at scale Q0.

2 Definition of moments and jet resolution

The distribution, Pn, of the multiplicity, n, of particles
or jets in an event can be characterized by its moments.
One considers the factorial moments fq or the normalized
moments Fq

fq =
∞∑

n=0

n(n − 1) . . . (n − q + 1)Pn,

Fq = fq/N
q, N ≡ f1,

(4)

with meanmultiplicityN . Furthermore, one introduces the
cumulant moments kq and Kq which are used to measure
the genuine correlations without uncorrelated background
in a multiparticle sample

kq = fq −
q−1∑
i=1

(
q − 1

i

)
kq−ifi, Kq = kq/N

q, (5)

in particularK2 = F2−1, K3 = F3−3F2+2; for a Poisson
distribution K1 = 1, Kq = 0 for q > 1.

These moments can also be obtained from the gener-
ating function of the multiplicity distribution

Z(Y, u) =
∞∑

k=0

Pn(Y ) uk (6)

by differentiation

fq =
dq

duq
Z(Y, u)

∣∣∣
u=1

, kq =
dq

duq
lnZ(Y, u)

∣∣∣
u=1

, (7)

where Y denotes here some kinematic variable like the
total energy.

In a high energy collision, many hadrons are produced
and they are found to cluster typically into jets of parti-
cles. The number of such jets depends on the resolution,
which is defined through an algorithm in terms of a res-
olution parameter. In this paper, we choose the so-called
Durham algorithm [35]. At resolution ycut one combines
particles into jets iteratively until all pairs of jets or par-
ticles have relative transverse momentum k2T > ycutQ

2 for
small relative angles Θij , or, in general,

yij = 2min
(
E2

i , E
2
j

)
(1− cosΘij)/Q2 > ycut. (8)

In our application to e+e− annihilation, Q is the total
CMS energy. At very low resolution (ycut → 1) one sees
only two jets which evolve from the primary qq system,
whereas with increasing resolution more and more jets are
resolved until at very high resolution (ycut → 0) all final
state hadrons are resolved, so

ycut → 1 : Njet = 2,

ycut → 0 : Njet = Nhadron.
(9)

In this paper we study both the multiplicity of jets and
the multiplicity of hadrons and the respective moments.
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In particular, we are interested in the variation of these
observables with energy and resolution as has recently been
reported in the experimental works [28,29].

In the popular Monte Carlo models of today, the par-
ton cascade is terminated at a scale of Q0 ∼ 1GeV; this
perturbative phase is followed by the hadronization phase
for which non-perturbative models, typically with a rather
large number of parameters, are introduced. In our calcu-
lation we follow the idea of LPHD [9] and let the parton
cascade evolve further down to a lower scale Q0 of a few
100MeV of the order of the QCD scale Λ itself. Then we
compare the result directly to the hadron final state. In
this way, besides the common parameter Λ only one extra
non-perturbative parameterQ0 is introduced which can be
interpreted either as a typical hadron mass or as inverse
hadron radius. In the theoretical calculations we obtain
the hadronic final state for Qc → Q0 and we replace (9)
by

ycut → 1 : Njet = 2,

ycut → (Q0/Q)2 : Njet = Nhadron.
(10)

An important feature is the transition from jets to
hadrons for small resolution parameter ycut which tests
the hadronization models in the region of small momen-
tum transfers, the so-called “soft” region. In this paper the
consequences of such an approach for multiparticle corre-
lations in the soft region is investigated in the theoretical
models and compared with the data.

3 Solution of evolution equations
for multiplicity moments

3.1 Double logarithmic approximation

In this approximation we consider a single jet of particles
or sub-jets at transverse momentum cut-off kT > Qc; for
e+e− annihilation, two jets have to be superimposed, with
Qc then corresponding to the resolution ycut. Only the
most singular terms of the parton splitting functions are
kept and recoil effects are neglected. Then we can restrict
ourselves to gluodynamics, i.e. we neglect the production
of quark–anti-quark pairs which would represent a non-
leading contribution. A common simplification of these
calculation is the restriction to 1-loop results; furthermore,
in this application we consider only light quarks. In this
case, the generating function follows an evolution equation
[3,7,36]:

dZ(Yc, u)
dYc

= Z(Yc, u)

Yc∫
0

dy′γ20(y
′)[Z(y′, u)− 1], (11)

Z(0, u) = u, (12)

with the multiplicity anomalous dimension

γ20(y) =
2NCαs(y)

π
=

β2

y + λc
, (13)

Yc = ln(E/Qc), λc = ln(Qc/Λ), β2 =
4NC

b
,

b =
11
3
NC − 2

3
nf , (14)

where Nc = 3. The argument of αs is related to the trans-
verse momentum, i.e. y = ln(kT/Qc). In our analytic cal-
culations we take

Λ = 300 MeV, λ = ln(Q0/Λ) = 0.015, nf = 3. (15)

The initial condition (12) implies that at threshold (Yc =
0) the jet Z(Yc, u) contains only one particle (sub-jet).

Differentiating the evolution equation (11) with respect
to u at u = 1, one obtains the following equation for the
multiplicity, N :

N ′(Yc) =

Yc∫
0

dy′γ20(y
′)N(y′), (16)

or, equivalently,

N ′′(Yc)− γ20(Yc)N(Yc) = 0,

N(0) = 1, N ′(0) = 0.
(17)

This equation can be solved in terms of Bessel functions [3]:

N(Yc) = 2β
√

Yc + λ

×
[
I1(2β

√
Yc + λ)K0(2β

√
λ)

+ K1(2β
√

Yc + λ)I0(2β
√
λ)

]
. (18)

This solution is shown in Fig. 1, for constant cut-off
Qc = Q0 as a full line, which represents the well-known
increase of multiplicity, N ∼ exp(2β

√
E/Λ), and follows

from the asymptotics of Iν(z) ∼ ez.
One can also study the variation of jet multiplicity at

fixed jet energy E with resolution Qc, as discussed previ-
ously [16]. This dependence is given by the same function
(18) if the Durham algorithm is applied; in this case the
cut-off in the evolution of the parton cascade is defined
through the transverse momentum kT ≥ Qc. The corre-
sponding result is represented by the dashed line in Fig. 1.
One observes a considerably lower multiplicity by an or-
der of magnitude, but, for decreasing Qc → Q0 (Yc → Y0)
in the transition from jet → hadron, the jet curve rises
rapidly and reaches the curve for hadrons. This behavior
is a consequence of the running coupling, which is always
smaller for jets, because kT, the argument of αs, is always
larger. The analytic behavior in this limit can be derived
from (18) using the approximation K0(z) � ln(2/z) for
small z with small Qc or large Yc (see also [21])

N ∼ (β2Yc)1/4 ln
(

1
β
√
λc

)
exp 2β

√
Yc. (19)

This multiplicity diverges logarithmically for Qc → Λ
(λc → 0). This divergence is a consequence of the di-
verging coupling in this limit. Since Qc ≥ Q0 > Λ, this
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Fig. 1. Multiplicity, N , in DLA in a single jet versus jet energy E for fixed Qc = Q0 (representing hadrons) and for fixed
energy E (Y0 = ln(E/Q0) = 5) but variable resolution Qc (or ycut = (Qc/2E)2) (representing jets) and factorial moments Fq

versus energy E (Y ). The moments approach the asymptotic limits F2 = 1.33, F4 = 4.62, F8 = 359.7, F16 = 2× 108

divergence is outside the physical region, but a strong vari-
ation remains, as seen in Fig. 1. Note that in the case of
fixed coupling, the moments would only depend on the
ratio E/Qc as no other dimensional quantities exist; then
both curves for jets and hadrons would coincide and follow
asymptotically a power law N ∼ (E/Q0)γ0 .

Next we calculate the factorial moments for q > 1. By
appropriate differentiation of the evolution equation (11)
one finds for q > 1:

f ′
q(Yc) =

Yc∫
0

dy′γ20(y
′)fq(y′) (20)

+
q−1∑
m=1

(
q

n

)
fm(y)

Yc∫
0

dy′γ0(y′)fq−m(y′),

fq(0) = 0, (21)

where (21) follows from (12) and (7), in agreement with
(4).

This coupled system of integro-differential equations
is solved numerically. The integral is computed using the
trapezoidal rule with a step size of δy = 10−5. As a test,
we calculated the multiplicity from the analytic formula
and compared with the numerical solution of (16). There
was good agreement to within 10−4. Reducing the step
size by a factor of 10 (δy = 10−6) resulted in a change of
about 1% in the value of F16 and a change in the ratio H5
by 0.1% below in the range considered.

A selection of results on the normalized moments Fq is
also shown in Fig. 1. The moments Fq for q > 1 vanish at
threshold Yc = 0. Shortly above threshold the moments of
higher rank q are suppressed as the multiplicity is low here
and only a small number of terms contribute to the sum
(4); on the other hand, they approach larger asymptotic
values. In DLA one finds [2]

Fq =
q

q2 − 1

q−1∑
m=1

(
q

m

)
FmFq−m

m

for q > 1 with F1 = 1,

(22)
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Fig. 2. The function y = Ash10(x) ≡ Arsinh(x/2)/ ln(10)
represents data with positive and negative signs over a large
range of scales, in comparison with the common y = log10 x

i.e. for the first terms

F2 =
4
3
, F3 =

9
4
, F4 =

208
45

,

F5 =
2425
216

, F6 =
2207
70

.

(23)

Therefore, with increasing energy more and more moments
Fq are needed to represent the multiplicity distribution.

Alternatively, one can study the ratios Hq = Kq/Fq of
cumulant and factorial moments. An intesting feature of
these ratios is their asymptotic decrease with rank q [22]

Hq � 1/q2. (24)

This behavior can be derived easily in leading order of
γ0 ∼ √

αs under the assumption of constant Kq and Fq

from the equation k′′
q = γ20fq, which follows from (7) and

(11) using (17).
On the other hand, these ratios are not very convenient

near threshold. First, we can derive for the cumulant mo-
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quantity plotted is Ash10(Hq × 105) with function (27). With increasing Y the moments approach the asymptotic behavior
Hq ∼ 1/q2

ments from (5) and (21)

Kq = (−1)q−1(q − 1)! for Yc = 0. (25)

Then, because Fq = 0 for q > 1, the ratios Hq diverge
in the limit Yc → 0 with alternating signs. Note that the
observablesFq,Kq, Hq each provide a full description of the
multiplicity distribution. At high energies Kq and Hq are
convenient, whereas at low energies Fq is more convenient
since the respective higher order terms are suppressed.

Before we come to a discussion of the results, we intro-
duce a convenient way to present data with a large range of
scales and alternating signs. It is an extension of the usual
log plot for positive numbers in which a positive quantity
y is represented in log scale y = 10x, x = log10 y. For a
quantity with either sign we write

y = 10x − 10−x = 2Sinh(x ln 10), (26)

x := Ash10(y) = (1/ ln 10)Arsinh(y/2), (27)

where Arsinh(z) = ln(z +
√
1 + z2). For large positive or

negative numbers one obtains Ash10(±y) ≈ ± log10(y) For
convenience we show in Fig. 2 the comparison of both func-
tions.

First, we study the evolution of the ratios, Hq, with
energy Y = ln(E/Q0) and this is shown in Fig. 3 for a few
values of Y . One can see the oscillations with large am-
plitude near threshold (small Y ) which follow from (25).
With increasing energy the oscillations continue with the
same oscillation length but with decreasing amplitude. The
moments of even rank q finally change sign and the oscil-
lations disappear at Y = 1 where they are already close
to the asymptotic limit (24). Also one observes the rise of

Hq with q at small Y and the decrease of Hq with q at
large Y .

Next we present in Fig. 4 the evolution of the ratios Hq

with energy Y which diverge at threshold and approach
the asymptotic result (24) from below. At the same time
we show the variation of the multiplicity moments for jets
at variable resolution at fixed energy Y = 5 (corresponding
to LEP energies at Q0 ≈ 0.3GeV). Similarly to the case
of multiplicity, there is a large difference between both
dependences, which reflects again the role of the running
coupling. The rise of the jet moments is delayed but they
reach the hadron moments as Qc → Q0 at the nominal
energy of Y = 5.

Finally we remark that the comparison with e+e− re-
sults would require quark jets in two hemispheres. This
can be obtained [3] by replacing the generating function
as follows:

Z → Z2CF /CA = Z8/9. (28)

We do not go into this minor difference in the present
qualitative discussion.

3.2 Modified leading logarithmic approximation

In this approximation, the full DGLAP splitting func-
tions [37,38] are included, with energy conservation taken
into account. The restriction to 1-loop results remains.
MLLA takes into account the next-to-leading order terms
in the

√
αs expansion of the exponent, lnNg. In the present

analysis, we neglect the qq̄ pair production (even though it
contributes inMLLA) for simplicity – it could be taken into
account without difficulty (see, for example [16,17]). The
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Fig. 4. Ratios of moments Hq in DLA versus energy for fixed Qc = Q0 (representing hadrons) and for fixed energy Y =
ln(E/Q0) = 5 but variable Qc representing jets at variable resolution ycut = (Qc/2E)2. The asymptotic limits Hq → 1/q2 are
shown as well

evolution equation for the generating function Z(Yc, u) in
gluodynamics reads [15]

dZ(Yc, u)
dYc

=

1−zc∫
zc

dz
αs(k̃T)
2π

Pgg(z) (29)

×{Z(Yc + ln z, u)Z(Yc + ln(1− z), u)− Z(Yc, u)},
Z(0, u) = u, (30)

where

zc = e−Yc , αs(k̃T) =
2π

b ln(k̃T/Λ)
, k̃T = min(z, 1−z)E,

(31)
and the splitting function Pgg(z) is given by1

Pgg(z) = 6
[
z(1− z) +

1− z

z
+

z

1− z

]
. (32)

For the symmetric kernel one can replace in the integral
1
2Pgg(z) by P asy

gg (z) = (1−z)Pgg which has no pole at z = 1
and behaves for z → 0 like P asy

gg ∼ 6/z. Differentiation by
u leads again to evolution equations for the multiplicity
Ng

N ′
g(Yc) =

1−zc∫
zc

dz
αs(k̃T)

π
P asy

gg (z) (33)

1 The P function [37] is related to the Φ function [38] by
Φab = 2Pab

× {Ng(Yc + ln z) +Ng(Yc + ln(1− z))− Ng(Yc)}
and the unnormalized factorial moments

f ′
q(Yc) =

1−zc∫
zc

dz
αs(k̃T)

π
P asy

gg (z) (34)

× {fq(Yc + ln z) + fq(Yc + ln(1− z))− fq(Yc)

+
q−1∑
m=1

(
q

m

)
fm(Yc + ln z)f(q−m)(Yc + ln(1− z))

}
.

At threshold for multiparticle production, we find the fol-
lowing conditions

q = 1 : Ng = 1 for E ≤ 2Qc,

q > 1 : fq = 0 for E ≤ qQc. (35)

The condition for q = 1 follows from the initial condition
Ng = 1 and N ′

g = 0 in (33) below the threshold for particle
emission at E ≤ 2Qc.

The constraint for the higher moments, fq forE < qQc,
corresponds to the kinematic condition for producing q
particles. We can derive the condition for q > 1 by induc-
tion. First, consider the case of q = 2 in (34). We know
that f2(Yc) = 0 if Yc ≤ ln 2 (equivalently, if E ≤ 2Qc)
from f1 ≡ N = 1 in this region. Now let us consider the
situation for q > 2, taking (35) for q−1 as given. Consider
first the evolution of fq(Yc) in (34) with Yc starting from
fq = 0 at Yc ≤ ln 2 whereN = 1. As long as the sum in (34)
vanishes we just have the evolution f ′

q(Yc) = fq(Yc)×I(Yc)
with a known integral I and therefore fq = 0.
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Y0 = ln(E/Q0) = 5 but variable Qc representing jets at variable resolution Qc (or ycut = (Qc/2E)2) and factorial moments Fq

versus energy Y0

Next we show that for energies E ≤ qQc (or Yc < ln q)
this sum indeed vanishes. First, note that the argument
ln(zE/Qc) of the moment fm varies from 0 at the lower
limit to ln(q − 1) at the upper limit, while z varies from
zc to 1 − zc and the argument of f(q−m) decreases from
ln(q − 1) to 0. In the sum, exactly one of the factors – fm

at energy E′ = zE or fq−m at energy E′′ = (1 − z)E –
vanishes because of condition (35) for m < q or q −m < q

E′ < mQc, E′′ > (q − m)Qc, fm = 0, fq−m ≥ 0, (36)

E′ > mQc, E′′ < (q − m)Qc, fq−m = 0, fm ≥ 0. (37)

Now the perceptive reader may notice that for m = 1,
fm = Ng cannot be 0. This is no problem, however, since
fq−1 = 0 in the whole range. Thus, we have proven the
validity of (35) for any q.

The MLLA evolution equation (29) reduces to the DLA
equation (11) if the integrand is taken in the small z
approximation, i.e. the ln(1 − z) term is neglected and
Pgg(z) ∼ 1/z. This limit should be achieved for very high
energies, because αs(k̃T) remains energy independent and
gives weight to ever smaller values of z under the integral.
Indeed, the high energy results for the moments in terms
of an

√
αs expansion [11,22] yields the DLA solutions in

the asymptotic limit.
Full solutions of the evolution equations (33) and (34)

satisfying the threshold condition, analogous to (18) in
DLA are not known. If the integrand is simplified assum-
ing a

√
αs expansion one obtains expressions with Bessel

functions similar to (18) but with non-integer index [9,39]
which remain finite for Q0 → Λ.

Here we solve the system of equations (33) and (34)
again numerically using the trapezoidal approximation
with step size 10−3 for the integral (for control also with
10−2); alternatively, the 3-point Simpson rule has been ap-
plied with similar results. Note that the evolution variable
Yc ∼ lnE now not only appears in the integration limits
but also in the integrand, which was not the case in the
DLA.

In Fig. 5 we show the numerical results for the multi-
plicity N in a single jet as function of Yc for hadrons (fixed
Qc = Q0 according to LPHD) and for jets at fixed energy

E (LEP energy) but variable resolution. The results look
similar to Fig. 1 in DLA, but the absolute size is now much
reduced because of the energy conservation constraint.

Also shown are some factorial moments, Fq. Again, the
moments are smaller in size and, therefore, the approach to
the asymptotic values (23) is further delayed. A distinctive
difference from DLA are the shifted threshold energies for
the higher moments according to (35).

The factorial moments Fq show a striking result at
intermediate energies: they all cross at one point (E ≈
20GeV) with Fq = 1, i.e. with a Poissonian distribution:

Poissonian transition point:

Fq = 1 at YP ≈ 4.7. (38)

This feature does not appear in DLA, and is apparently
related to the delayed thresholds. For the considered mo-
ments with q ≤ 16 the crossing at Fq = 1 occurs within an
interval of δY ≈ 0.05 for both step sizes 10−3 and 10−2 of
our numerical computation, so the distribution is close to a
Poissonian. We note, though, that the higher moments Fq

with q � 32 have a threshold above the transition point
YP so the Poissonian cannot be an exact solution. Nev-
ertheless, it is remarkable that besides the threshold and
asymptotic regime, there is an intermediate energy with
a very simple behavior. The Poissonian transition point
follows apparently from the evolution equation – a novel
property for which we have no analytical explanation yet.

Next we consider the moment ratios Hq for hadrons
(Qc = Q0) from low to high energies in Fig. 6. At the low
energies (Y ≤ 4) we observe again the pattern of rapid os-
cillations from one order q to the next as in DLA reflecting
the threshold behavior. Beyond the Poissonian transition
point (Y ≥ 6) we enter a new regime with a larger oscilla-
tion length. The first minimum is slowly rising from q = 5
at Y = 6 to q = 7 at Y = 10. At higher q a maximum fol-
lows. This is expected from the analytical results [13,22].
Whereas the oscillation amplitude of Hq rises with q at
low energies, it decreases at the high energies. However, it
is always much below the asymptotic DLA limit for large
q, only for small q below the first minimum one can see a
convergence to this limit in the considered energy range.
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The evolution of the Hq moments with Yc is shown
in Fig. 7 for hadrons and jets. In comparison to the DLA
results of Fig. 4, we see at first a qualitatively similar be-
havior, but again the approach to the asymptotic limit is
not visible for the higher moments in the considered energy
range.

More details are shown for hadrons in Fig. 8. New fea-
tures emerge at high energies (above Y ≈ YP ≈ 4). For the

higher moments (q ≥ 4) secondary minima and/or max-
ima appear with increasing energy at the level of O(10−4).
These secondary oscillations lead to a delay of the onset of
the asymptotic behavior. Below Yc = 20 (E � 108GeV)
the moments with q ≥ 6 are below 1/10 of their DLA
asymptotic value.

The Poissonian transition point corresponds to Hq = 0
for all q > 1. Indeed the moments show this behavior in
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good approximation at the above YP. Beyond this point
the positive short range correlations lead to a positive
H2, whereas below it the energy conservation constraints
lead to a negative cumulant. In general, the even Hq ra-
tios change sign because of the negative value at thresh-
old and the positive 1/q2 asymptotic limit. In hadron
phenomenology, the positive correlations H2 > 0 reflect
the resonance production [40], in our calculation it is the
gluon bremsstrahlung with small angle (above Q0 cut-off)
which lead to the short range correlations, be it between
“hadrons” (partons at scale Q0) or between (mini) jets.

As common features of DLA and MLLA, we note the
splitting between hadron and jet moments at the same
Yc which is a direct consequence of the running coupling.
Hadron and jet multiplicities coincide for Qc → Q0.

4 Monte Carlo simulation of parton cascade

After the numerical solutions of the DLA andMLLA evolu-
tion equations for single jets, we finally apply an MC event
generator (ARIADNE [32]) at the parton level based on
the same procedures as the above evolution equations: per-
turbative QCD evolution with the coupling αs(kT) termi-
nated by a transverse momentum, kT, cut-off and arbitrary
parameters Λ and Q0 > Λ. The MC involves the coupled
evolution of quarks and gluons in the cascade, the inclusion
of large angle radiation, the full first-order matrix element
for e+e− → qq̄g, and exact energy-momentum conserva-
tion. These features lead to a higher accuracy than our
MLLA calculation.2 On the other hand, a simplification
of the Monte Carlo is the exclusive use of 1-loop calcula-
tions. This simplification could result in deviations when
very different energy scales are compared.

In our adoption of the MC program, we set all quark
masses to zero but kept the masses for heavy quarks in the
calculation of the number of flavors nf for αs at a given
dipole mass. The results depend only on the two adjustable

2 In MLLA, the inclusion of quark jets is possible – also, the
first-order matrix element has been included in the calculation
of multiplicities [16], however, energy-momentum conservation
is fully realized in the MC approach and large angle emission
is more easily accessible.

parameters Λ and Q0; alternatively, we use the parameter
λ = ln(Q0/Λ). These parameters have been determined
from a fit to multiplicities. We refer to this modified Monte
Carlo as “ARIADNE-D,” where “D” stands for “Duality”.

The jet multiplicities are obtained from the final state
partons using the Durham algorithm, just as in the exper-
imental analysis with (8) and (9). Hadron multiplicities
are related to the parton multiplicities, generated at scale
Q0, according to the LPHD prescription.

This model will be compared with the experimental
data. First we consider the mean hadron and jet multi-
plicities N , as shown in Fig. 9. The jet multiplicities for
energies Q = 35, 91 and 189GeV are obtained as functions
of the cut-off Qc or of ycut = (Qc/Q)2 – in the figure they
are plotted as a function of the variable

Ycs = −1
2
ln(ycut +Q2

0/Q
2) =

1
2
ln(Q2/(Q2

c +Q2
0)) (39)

with the additional scale Q0. The MC parton multiplicity
Npart is shown at the cut-off Qc = Q0 and should be
compared at this scale with the total hadron multiplicity
Ntot according to the LPHD prescription, in generalNtot =
K × Npart (where K is a constant); the observed charged
multiplicity is given by Nch = fchNtot with the charged
particle fraction fch. These factors also depend on whether
weak and electromagnetic decays of hadrons are included
(K0, Λ, . . .). The factor Kfch will be determined from the
fit. A simple choice is K = 1 as for jets and fch = 2/3
as obtained previously [16].3 For jets we compare parton
and hadron results at the same cut-off and with K = 1.
Note that the choice of variable does not matter for the
comparison of jet properties (both MC and experimental
data are obtained by the same procedure); but, using the
variable Ycs in (39), has the advantage that the jet data
approach the hadron data for ycut → 0 at a finite value
of Ycs in the figure according to (9). In the region Qc =
1–2GeV the dependence on Q0 disappears and we are
in the perturbative QCD regime, governed by the single
parameter Λ [52].

3 If proportionality of energy spectra of partons and hadrons
according to LPHD is required in the full energy range, then
the normalization has to be the same (K = 1) because of
energy conservation.



66 M.A. Buican et al.: QCD explanation of oscillating hadron and jet multiplicity moments

0.01

0.1

1

10

100

0 1 2 3 4 5 6 7 8

N
-2

Ycs

Hadrons
Jets :

JADE 35 GeV
OPAL 91 GeV

L3 91 GeV
OPAL 189 GeV

Fig. 9. Multiplicity N of hadrons (taken as Nch × 1.25 using data [41–50] and LEP averages from [22]) and multiplicity of
jets [51,28] in e+e− annihilation together with our Monte Carlo calculations as function of Ycs; see (39) (Ycs ∼ ln(Q/Qc))

Table 1. Monte Carlo results on hadron and jet multiplicities
for given values of Λ (rows) and λ (columns). The first half
of the table consists of data with ycut = 0 (hadrons), and the
second half consists of data with ycut = 2× 10−5

Λ(MeV) λ = 0.001 λ = 0.01 λ = 0.015 λ = 0.05
250 35.8 31.7 30.6 26.5
300 33.3 29.5 28.4 24.8
400 29.6 26.3 25.4 22.0
500 27.0 24.0 23.2 20.1
250 12.4 12.2 12.1 11.8
300 13.0 12.8 12.7 12.4
400 13.9 13.6 13.5 13.0
500 14.4 14.0 13.9 13.2

In order to determine the parameters of the model we
compared the MC results with the multiplicity data at
LEP-1. We noted that we could not get good agreement
with the jet data from OPAL [51] over the entire kinematic
range of 10−5 < ycut < 0.5. Since we were interested in
studying the transition between jets and hadrons, we chose
our parameters so that they gave a particularly good de-
scription of the low ycut regime and the hadron multiplicity
as well as the very large ycut region. In Table 1 we illustrate
the dependence of the hadron and jet multiplicity on the
parameters. We require a good fit of the jet multiplicity
of N = 14.1 ± 0.4 for ycut = 2 × 10−5 [51] corresponding
to Qc = 0.4GeV. At this scale the particles from non-
hadronic decays are recombined into the primary hadrons
and this ambiguity is removed. Also we considered the
mean chargedmultiplicity at LEP-1 ofNch = 21.2±0.3 [22]

(this number includes particles fromK0 and Λ decays). So-
lutions can be found close to the simple case fchK = 2/3.
We do not require this condition though and choose the
parameters

Λ = 400 MeV, λ = 0.01, (Kfch)−1 = 1.25; (40)

they are not very different from the previous study for
hadrons alone (Λ = 200MeV, λ = 0.015 and (Kfch)−1 =
1.5 [53]) which optimized the description of the hadronic
correlations alone.

With our choice (40) a reasonable description of jet
multiplicities for small and large ycut was obtained, not
only at LEP-1, but also at the higher and lower energies
of 35 and 189GeV, as can be seen in Fig. 9. Furthermore
we get a good description of the trend of hadron multiplic-
ities as function of CMS energy in the full range Q = 3–
200GeV. The Monte Carlo was run with 250 000 events at
each energy.

As in the analytic calculations, the multiplicity in the
MC approach applied here would diverge for Q0 → Λ.
Now, Fig. 9 shows that with the same cut-off Q0 taken at
all energies the correct energy dependence of the hadron
multiplicity is obtained.

At every CMS energy in Fig. 9, the MC fails to repro-
duce the intermediate ycut region with MC results falling
above the experimental data. We find that the structure
we are unable to reproduce occurs at the fixed bmass scale
Qc ∼ 5GeV at all energies. In our Monte Carlo we use only
light quarks so as to avoid complicated decay processes. It
is plausible to assume, then, that the “hump” structure at
5GeV comes from b quark production. This conjecture is
further supported by the enhancement of the effect seen
at the Z energy of 91GeV as expected from the enhanced
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b quark production by neutral current interactions of the
Z.

The results in Fig. 9 look similar to the analytic solu-
tions in Figs. 1 and 5 and demonstrate again the impor-
tance of the running coupling which leads to the scale (Q)
dependence of multiplicity at fixed Ycs or Q/Qc; in the
threshold region (low Ycs) the difference between hadron
and jet multiplicities amounts to a an order of magnitude.

Next, we turn to the energy evolution of the Hq mo-
ments for hadrons (i.e. partons at scale Q0) from low to
high energies (10–1000GeV). This evolution is displayed
in Fig. 10 and looks similar to the result from MLLA in
Fig. 6: at the low energy, below the Poissonian point, there
are the rapid oscillations reflecting the threshold behav-
ior, above that point we observe the oscillations with in-
creasing length for increasing energy. The first minimum
occurs at qmin ≈ 5 at 90GeV and increases to qmin ≈ 7
at 1000GeV. This increase is similar but a bit stronger
than in the asymptotic formula (3), which would predict
an increase by one unit of qmin instead of two. These calcu-
lations have been carried out with a sample of 4M events.
The statistical errors are determined from the fluctuations
of 4 sub-samples and are found to be significantly smaller
than the oscillation amplitudes at their maximum. The
numerical results are also given in Table 2.

In Fig. 11, we compare the ratios, Hq, obtained from
our calculations with the measurements by L3, both for
hadrons and for jets with variable (Durham) cut-off Qc.
For hadrons we assume that the multiplicity distribution
of charged particles has the same normalized moments as
the distribution of all particles. This is the case if the same
conversion factor fch applies for all multiplicities n.

For hadrons, a measurement of the full multiplicity dis-
tribution [29] which extends up to nch = 62 and one with
truncation [28] at the multiplicity nch = 48 are presented.
The truncation can be seen to considerably increase the
oscillation amplitude. We compare with the Monte Carlo
results again with and without truncation. The trunca-
tion was at multiplicity nt = 63 to obtain the same event
fraction of 0.005% for multiplicities n > nt as in the exper-
imental data. Our results reproduce the data rather well
but for the truncated moments the high q oscillations are
a bit weaker.

We mention here another subtlety of the experimental
analysis. The L3 data in Fig. 11 refer to data without K0

and Λ decays, whereas the multiplicities in Fig. 9 include
them. However, the Hq moments do not depend on this
difference, except to within a few per cent. The same is
true for the truncated moments, as long as the removed
event fraction is the same [29]. This appears to be plausible
from the point of view of KNO scaling.

We note that the moments presented by the SLD Col-
laboration [27] have been determined from the multiplicity
range 6 ≤ nch ≤ 54 and they look very similar to the trun-
cated L3 moments. We stress that from our point of view
the untruncated moments are of primary relevance; only
these obey the evolution equations discussed above and
have simple asymptotic properties. Beyond the first mini-
mum they are very small at LEP energies, of the order of
10−5.

Finally, in the same figure, Fig. 11, we study the evolu-
tion of theHq moments with cut-offQc or ycut = (Qc/Q)2.
The MC calculations reproduce well the change from the
rapid oscillations with large amplitude at large cut-off
Qc/Q to the oscillations with larger oscillation length and



68 M.A. Buican et al.: QCD explanation of oscillating hadron and jet multiplicity moments

Table 2. Ratios of multiplicity moments, Hq, for different CMS ener-
gies, Q, in e+e− anihilation obtained from ARIADNE-D parton MC
(the statistical errors of the MC results are generally smaller than the
last digit given)

q 10GeV 35GeV 91GeV 190GeV 1000GeV
2 −0.0565 0.00808 0.039 0.0569 0.0864
3 0.0129 0.00495 0.0074 0.0104 0.0176
4 −0.0047 −0.00064 0.00040 0.00126 0.00356
5 0.0022 −0.00015 −0.00022 −0.00014 0.00040
6 −0.0013 −0.000051 −0.00012 −0.00020 −0.00019
7 0.0010 0.000028 −0.000017 −0.00008 −0.00021
8 −0.0010 0.000015 0.000013 −0.000006 −0.00014
9 0.0011 −0.0000005 0.000006 0.000015 −0.00008
10 −0.0015 −0.0000069 −0.000003 0.000009 −0.00004
11 0.0022 −0.0000041 −0.000005 −0.0000009 −0.000005
12 −0.0038 0.0000032 −0.000001 −0.000005 0.000027
13 0.0071 0.0000036 0.000003 −0.000003 0.000047
14 −0.013 0.0000014 0.000004 0.000001 0.000045
15 0.026 −0.0000048 0.000001 0.000005 0.000019
16 −0.035 −0.0000029 −0.000003 0.000003 −0.000018
17 −0.09 0.0000008 −0.000005 −0.000001 −0.00005
18 1.7 0.0000093 −0.000002 −0.000005 −0.00005
19 −19 0.0000018 0.000003 −0.000005 −0.00003
20 250 −0.0000093 0.000007 0.000001 0.00002

smaller amplitudes in the small Qc/Q region close to the
fully resolved hadronic final state.

In the subsequent Figs. 12–14 we show these ratios,
Hq, separately as function of Ycs, i.e. of Q/Qc. Included
are further data at intermediate ycut values from [29] to-
gether with the corresponding MC predictions and also the
predictions for the hadronic final state, i.e. at Qc = Q0.
In these calculations 2.5M events have been generated in
the MC. For all orders q, the calculation follows the exper-
imental data closely. Again, there is the same qualitative
difference between the hadron and jet data as observed
before for the DLA and MLLA calculations in Figs. 4 and
7.

For the ratio H2 we also compare with results we de-
duced from TASSO moments [54]. The data clearly con-
firm the splitting of the moments at different scales, as
expected from the running coupling. At small Q/Qc, both
for hadrons and for jets, the distribution is narrower than
Poisson (H2 < 0), while at higher values of this ratio the
distribution gets broader (H2 > 0). The positive Hq is ex-
pected from the short range correlations, either from gluon
bremsstrahlung at small angles for partons or from reso-
nance decays for hadrons. At the point with H2 = 0 the
higher moments are also close to zero corresponding to a
Poissonian transition point, both for jets and hadrons:

Poissonian transition point:

Q ≈ 30 GeV hadrons,
Q = 91, Qc ≈ 0.3GeV jets.

(41)

It is interesting to note that the Poissonian distribution
has actually been successfully fit to the data at 29GeV by
the HRS Collaboration [45].

We observe again a close similarity between MC and
MLLA results, although the deviations from a Poissonian
(H3 > 0 at minimum) appear a bit larger in the MC.

5 Conclusions

We have studied the multiplicity moments, in particular
the Hq ratios for the QCD parton cascade in three dif-
ferent approximations: DLA, MLLA and parton Monte
Carlo. The DLA predicts the very asymptotic behavior.
The asymptotic MLLA corrections predict the existence
of Hq oscillations but do not explain any ycut dependence.
The more precise calculations of the full MLLA solution
of the evolution equations and the Monte Carlo method,
which include the correct threshold behavior, show at the
presently accessible energies the following new features of
the multiplicity moments:
(a) There is a particular energy scale, YP, for hadrons or a
particular ycut for jets where the multiplicity distribution
is approximately Poissonian (Hq ≈ 0, Fq ≈ 1 for q > 1).
(b) In a region of smaller energies there is a rapid oscil-
lation of Hq, reflecting the threshold behavior; at higher
energies the oscillation length increases with energy as pre-
dicted qualitatively by asymptotic MLLA, but the oscil-
lation amplitude is much smaller. In fact, for hadrons at
LEP energies we predict |Hq| � 10−5 beyond the first min-
imum at q ≈ 5. Also, there are secondary extrema of Hq
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Fig. 11. (a) Ratio Hq of multiplicity moments obtained by L3
Collaboration [28,29] with truncation of multiplicity at nch =
48 compared with ARIADNE-D MC (truncation at n = 65)
and both without truncation; (b) ratios Hq for jets at different
cut-off Qc [28] compared with our MC results

as a function of energy for a given rank q. The approach
to the asymptotic DLA region is very slow if visible at all.
(c) For fixed resolution parameter ycut the moments of jets
and hadrons are rather different as a consequence of the
running coupling.

We conclude that the perturbative approach yields
good results not only for single particle phenomena, such
as single inclusive spectra and mean multiplicities, as en-
visaged originally in the LPHD approach, but also for cor-
relations of high order. Above the Poissonian transition
point, the short range correlations initiated by resonance
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Fig. 12. Ratio of moments Hq for hadrons [54] and jets [28,29]
in comparison with ARIADNE-D Monte Carlo

decays for hadrons and gluon Bremsstrahlung for partons
become increasingly important and lead to the broadening
of the multiplicity distribution of both hadrons and jets
(H2 > 0). So there is a duality also between hadronic and
partonic correlations.

Moreover, the absolute normalization, originally con-
sidered as free parameter, can be studied as function of
resolution ycut and a unified description of hadronic and
jet phenomena is possible, using the variable Ycs in (39)
with the shifted ycut prescription, both for multiplicities
and correlations.

Both the predicted energy evolution of hadronic cor-
relations and the ycut dependence of the jet correlations
follow the experimental results closely, with the excep-
tion of jets near the b quark threshold. In the jet regime
Qc � 1–2GeV, the effect of the hadronic scale Q0 becomes
negligible and we are in the domain of perturbative QCD
with the single parameter Λ only; Qc is then an external
parameter to be chosen by the experimenter. At smaller
scales, the hadronic scale Q0 becomes important, and the
results become model dependent. The transition region
from jets to hadrons for ycut → 0, which shows strong
variations of all moments, is very well reproduced by the
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parton MC with low cut-off kT ≥ Q0 > Λ. In this region
the coupling becomes large, i.e. αs � 1. An extension of
the calculation into this kinematic region is not justified a
priori, but, as seen from the analytical results, the conver-
gence of the perturbation theory is not in danger, and the
solutions can be obtained from the evolution equations or
from the MC. This successful description can be viewed
at least as a good effective parameterization of the soft
transition region.

With increasing order, accurate calculations are re-
quired. So far, this is only accessible by numerical meth-
ods. Further improvements are possible by including heavy
quarks in the parton evolution and by including the 2-loop
results.

The good description of the data by the MC model
with normalization K ≈ 1 implies that in the considered
applications, one parton counts for about one hadron and
the hadron final state is well represented by a parton final
state of the same multiplicity at resolution scale Q0 � Λ.
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